269 research outputs found

    Electron affinity of liquid water.

    Get PDF
    Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1-0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential of the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid

    A dedicated state space for power system modeling and frequency and unbalance estimation

    Get PDF
    International audienceOver the last decades, a great deal of research has been focused on power quality issues in electrical energy transportation. We present a state-space representation to model dynamical power systems like electrical distribution systems. The proposed model is able to take into account all the dynamic behavior of a multiphase power system. It has been applied to model a typical three-phase power system and its unbalance, i.e., an electrical grid which can be perturbed by nonlinear loads and distributed renewable energy generation which is a typical changing system. Associated with an extended Kalman filter, the state-space model is used to iteratively estimate power quality parameters. Indeed, the symmetrical components of the power system, i.e., their amplitude and phase angle values, and the fundamental frequency can be calculated at each iteration without any prior knowledge. The proposed estimation technique is an evolving and adaptive method able to handle the changing power system. Its effectiveness has been evaluated by several tests. Results have been compared to other methods. They show the efficiency and better performance of the proposed method. The fundamental frequency and the symmetrical components are precisely estimated even under disturbed and time-varying conditions. This state-space representation can therefore be used in active power filtering schemes and in load frequency control strategies

    The simulation of aerosol Lidar developed at the Institute of Geophysics

    Get PDF
    Lidar is an active remote-sensing system that uses laser radiation in the ultraviolet, visible and near-infrared wavelength domain. It allows the measurement of the physical properties of the atmosphere with spatial and temporal resolution. We have simulated the system and researched the initial design of the Lidar system to monitor the aerosol with the main parameters: high power Nd - YAG pulse laser emitted at the 532 nm wavelength. The system includes 28 cm diameter optical glass, photomultiplier tube (PMT) - H6780-03 photodetector, and optical components for convergence and filtering of reflected reflections. Initial measurements show that the Lidar system is highly sensitive, which determines important atmospheric properties such as the distribution and physical properties of the aerosol and height of ABL (atmospheric boundary layer)

    New sampling theorem and multiplicative filtering in the FRFT domain

    Get PDF
    Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by Fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.publishe
    corecore